Aleyna Meric (MSc student)

Our brains integrate many kinds of sensory information to create the appropriate behavioral output in a wide variety of situations. Sensory systems constantly integrate external and internal cues and relay the information to motor systems to drive behavior. In the human brain, a diverse number of circuits and around 90 billion neurons are responsible for these computations. In flies, like Drosophila melanogaster, with less than one million neurons and a brain the size of a poppy seed, the situation is thought to be simpler. Nevertheless, flies are capable of a range of complex behaviors, including navigation and learning. This complex array of behaviors, the small number of neurons, and the genetic toolkit available in Drosophila make them a great model system for the investigation of sensorimotor pathways controlling specific behaviors.

At present, Aleyna is working on her Master‘s Thesis, in which she is studying the integration of visual and mechanosensory inputs by a descending command-type neuron in Drosophila. To this end, she presents visual stimuli using an LED arena and mechanosensory stimuli via air puffs while performing in vivo whole-cell patch-clamp recordings in behaving flies. Thus, she aims to explore how populations of descending neurons integrate multimodal sensory cues to drive behavior.

Aleyna is from Turkey and she graduated with honors from a B.Sc program in Molecular Biology and Genetics at  Bogazici University, Istanbul. She is now doing her M.Sc at the JMU Würzburg in the Graduate School of  Life Sciences FOKUS program. Her experience so far also includes electrophysiology and immunohistochemistry in mouse brain slices. 


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s