Emmy Noether Project: Neural mechanisms enabling context-dependent sensorimotor flexibility

To ensure survival in an ever-changing, complex world, animal behavior needs to be flexible and adaptive. Nervous systems have evolved to enable behavioral responses to a wide variety of sensory stimuli, but the adequate behavioral response to a given stimulus is highly context-dependent, and behavioral or internal states accordingly affect sensorimotor processing. For example, locomotion modulates responses of visual neurons, and hunger increases food-searching behavior and shifts taste preferences. Despite their ubiquitous importance, the neural mechanisms enabling context-dependent sensorimotor flexibility are not well understood. My Emmy Noether research program ‘Neural mechanisms enabling context-dependent sensorimotor flexibility’ aims to discover fundamental principles of motor control, in particular with regard to sensorimotor flexibility, by leveraging the power of neurogenetics, electron microscopy-based circuit reconstruction, and in-vivo patch-clamp recordings in behaving Drosophila.

NeuroNex Project: Communication, Coordination & Control in Neuromechanical Systems

The Ache Lab is part of a NeuroNex Network with the goal of addressing the foundational question: How do biological nervous systems control and execute interactions with the environment?

Our network, which includes scientists and engineers from ten institutions across the United States, the United Kingdom and Germany, is focusing on Communication, Coordination, and Control in Neuromechanical Systems (C3NS) to develop comprehensive models of sensorimotor control with relationships to the environment, both within individual species, and across the phyla Arthropoda, Mollusca and Chordata. 

Together, we seek to create a conceptual modeling framework that can predict control for organisms of different size and speed scales. Through our inter-phylum experimental study of sensorimotor control, we seek to identify convergent or conserved principles to refine and inform this framework. Such a framework will have a tremendous effect on the ability to interpret, and extend the impact of, experimental results across biology and robotics, with future applications to prosthetics.

The Ache Lab will closely collaborate with the Büschges, Ito and Blanke Labs at the University of Cologne and Nick Szczecinski’s Lab at the University of West Virginia to contribute a model of Drosophila motor control to the project. C3NS is led by Roger Quinn at Case Western Reserve University.

https://case.edu/neuronex/